Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires.
نویسندگان
چکیده
We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (E(g,Si) = 1.1 eV) and tungsten oxide (E(g,WO3) = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 µm pitch, covered vertically with 50 µm of WO3 with a thickness of 1 µm. Many geometrical variants of this prototypical tandem device were explored. For conditions of illumination with the AM 1.5G spectra, the nominal design resulted in a short circuit current density, J(SC), of 1 mA/cm(2), which is limited by the WO3 absorption. Geometrical optimization of photoanode and photocathode shape and contact material selection, enabled a three-fold increase in short circuit current density relative to the initial design via enhanced WO3 light absorption. These findings validate the usefulness of a mesoscale analysis for ascertaining optimum optoelectronic performance in photoelectrochemical devices.
منابع مشابه
Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes.
WO3 thin films have been deposited in a hierarchically structured core-shell morphology, with the cores consisting of an array of Si microwires and the shells consisting of a controlled morphology WO3 layer. Porosity was introduced into the WO3 outer shell by using a self-assembled microsphere colloidal crystal as a mask during the deposition of the WO3 shell. Compared to conformal, unstructure...
متن کاملPhotoelectrochemical water splitting: silicon photocathodes for hydrogen evolution
The development of low cost, scalable, renewable energy technologies is one of today’s most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separa...
متن کاملEnhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays
We report ordered, high aspect ratio, tapered Si microwire arrays that exhibit an extremely low angular (0° to 50°) and spectrally averaged reflectivity of <1% of the incident 400−1100 nm illumination. After isolating the microwires from the substrate with a polymer infill and peel off process, the arrays were found to absorb 89.1% of angular averaged incident illumination (0° to 50°) in the eq...
متن کاملDemonstration of Artificial Photosynthesis with Peeled Silicon Microwire Arrays
Sunlight can be harvested and converted into useful energy using semiconductor–liquid junction solar cells, which generate power through the transfer of electrons to molecules dissolved in solution. If two such interfacial electron-transfer events are efficiently coupled, stable chemical bonds can be formed, an important step to powering our planet with fuels derived from renewable energy. My t...
متن کاملVersatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications
A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 22 Suppl 6 شماره
صفحات -
تاریخ انتشار 2014